
The jsonparse package
A handy way to parse, store and access JSON data from files or strings in
LaTeX documents

Jasper Habicht *

Version 1.0.2, released on 23 January 2025

1 Introduction

Hello guys, I am Jason, the JSONparsing horse. JSONdata ismy favorite thing to parse! But I found
that converting JSON to TeX can be a bit tricky. Therefore, I created this package which I am happy
to introduce to you.

The jsonparse package provides a handy way to read in JSON data from files or strings in
LaTeX documents, parse the data and store it in a user-defined token variable. The package allows
accessing the stored data via a JavaScript-flavored syntax.

This package is still in a beta stage and not thoroughly tested. Bugs or improvements can be
issued via GitHub at https://github.com/jasperhabicht/jsonparse/issues.

2 Loading the package

To install the package, copy the package file jsonparse.sty into the working directory or into
the texmf directory. After the package has been installed, the jsonparse package is loaded by
calling \usepackage{jsonparse} in the preamble of the document.

The package does not load any dependencies.

debug

The package can be loaded with the option debug . It will then output to the log file every instance
of a string, a boolean (true or false) value, a null value, a number as well as the start and end of every
object and the start and end of every array that is found while parsing the JSON string or JSON file.

This key can be set either as package option or using \JSONParseSet . It can also be set locally
as option to the commands \JSONParse and \JSONParseFromFile .

* E-mail: mail@jasperhabicht.de. I am grateful to Joseph Wright, Jonathan P. Spratte and David Carlisle who helped me
navigating the peculiarities of TeX and optimizing the code. Jason, the JSON parsing horse: Copyright 2024Hannah Klöber.

1

https://github.com/jasperhabicht/jsonparse/issues
mailto:mail@jasperhabicht.de

3 General remarks of the parsing procedure

In general, the packagewill read and store the JSON source and data as string, whichmeans that all
characters have category code 12 (“other”), except for spaces and (horizontal) tabs which have cate-
gory code 10 (“space”). The \endlinechar value is set to−1which means that linefeeds and car-
riage returns are ignored by TeX.These settings are in line with the JSON specification of handling
whitespace. Furthermore, if PDFLaTeX is used, the upper-half of the 8-bit range is set to “active”.
Additionally, JSON defines a small set of escape sequences and in order to be able to process these,
the category code of the backslash is set to 0 (“escape”).

4 Escaping and special treatment of the input

JSON strings cannot contain the two characters " and \ . These two characters need to be escaped
with a preceding backslash (\). This package therefore redefines locally the TeX control symbols
\" , \/ , \\ , \b , \f , \n , \r , \t and \u . These control symbols areprevented fromexpanding
during parsing. For example, \" is first defined as \exp_not:N \" and only when typeset, \"
is expanded to " , which ensures that strings are parsed properly.

Similarly, the control symbol \/ expands eventually to / and \\ to \c_backslash_str (i. e.
a backslash with category code 12).

The escape sequence \u followed by a hex value consisting of four digits eventually expands to
\codepoint_generate:nn that creates the character represented by the relevant four hex digits
with category code 12 (“other”). If two escape sequences \u wit four hex digits each follow each
other and together represent a Unicode surrogate pair, this surrogate pair is converted into the rel-
evant Unicode codepoint.

The JSON escape sequences \b , \f , \n , \r and \t eventually expand to token variables of
which the contents can be set using the relevant replacement key. See more on setting options
below in section 5.2.

It is possible to insert TeXmacros to the JSON source that will eventually be parsed when type-
setting. Backslashes of TeX macros need to be escaped by another backslash. The TeX macros \"
and \\ must be escaped twice in the JSON source so that they become \\\" and \\\\ respec-
tively.

\x{‹token variable name›}{‹key›}

Using the control sequence \x , it is possible to nest JSON strings into each other. Used inside the
\JSONParse command, the control sequence takes two arguments delimited by curly braces. The
first argument represents the name of the token variable that holds the parsed JSON data where
the inserted JSON string should be taken from. The second argument sets the key that should be
selected. The following example shows a simple use case:

c

\JSONParse{\myJSONdataA}{
{ "a" : { "b" : "c" } }

}

\JSONParse{\myJSONdataB}{
{ "d" : \x{myJSONdataA}{a} }

}

\JSONParseValue{\myJSONdataB}{d.b}

Note that the control sequence \x is replaced by the value exactly. Therefore, if the value hap-
pens to be a string, the control sequence \x should be placed between quotation marks (") in or-

2

der for the resulting string to be valid JSON. The control sequence \x is only available inside the
\JSONParse command, but not inside the \JSONParseFromFile command.

escape={all}
escape={none}
escape={number sign}
escape={dollar sign}
escape={percent sign}
escape={ampersand}
escape={circumflex accent}
escape={low line}
escape={tilde}

The key escape can be used to convert characters that don’t require escaping in JSON but in TeX
into the relevant TeX escape sequences. Apart from the backslash and curly braces that need to be
escaped anyways, these are the number sign, the dollar sign, the percent sign, the ampersand, the
circumflex accent, the low line and the tilde. The characters can be selected individually separated
by a comma (for example escape={dollar sign, circumflex accent, low line} . With
escape={all} , all escaping sequences are selected, with escape={none} , none is selected.

The naming of the relevant characters follows their Unicode names. However, hash exists
as alias for number sign , dollar as alias for dollar sign , percent for percent sign ,
circumflex for circumflex accent and underscore for low line .

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParseValue , \JSONParseArrayValues and \JSONParseArrayValuesMap .

rescan
rescan={‹boolean›}

The key rescan can be used to activate and deactivate rescanning of the output. This key is ac-
tive per default. Rescanning converts all tokens to their default category codes and TeX control se-
quences are expanded before typesetting. Further, during the rescanning process, JSON escape
sequences are replaced and characters that don’t require escaping in JSON but in TeX are replaced
by the relevant TeX escape sequences.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParseValue , \JSONParseArrayValues and \JSONParseArrayValuesMap .

5 Main user commands

\JSONParse[‹options›]{‹token variable›}{‹JSON string›}

The command \JSONParse is used to parse a JSON string and store the parsed result in a token
variable (a property list). The second argument takes the name of the token variable that is created
by the command. The third argument takes the JSON string to be parsed.

For example, using \JSONParse{\myJSONdata}{ { "key" : "value" } } , the relevant
JSONstringwill beparsedand the result stored in the tokenvariable \myJSONdata asproperty list.
In this case, the property list only consists of one entry with the key key and the value value . The
command \JSONParseValue{\myJSONdata}{key} , for example, can then be used to extract
the relevant value from this property list (see the description below).

The first optional argument can be used to pass options to the command that are then applied
locally.

3

\JSONParseFromFile[‹options›]{‹token variable›}{‹JSON file›}

The command \JSONParseFromFile is used to parse a JSON file and store the parsed result in
a token variable (a property list). It works the same way as \JSONParse , but instead of a JSON
string, it takes as third argument the path to the JSON file relative to the working directory.

\JSONParseValue[‹options›]{‹token variable›}{‹key›}

The command \JSONParseValue is used to select values from the token variable (property list)
that has been created using the commands \JSONParse or \JSONParseFromFile . The second
argument takes the token variable that holds the parsed JSON data. The third argument takes the
key to select the relevant entry from the parsed JSON data using JavaScript syntax.

If the JSON string { "key" : "value" } is parsed into the token variable \myJSONdata ,
using \JSONParseValue{\myJSONdata}{key} would extract the value associated with the key
key , which in this case is value , and typeset it to the document.

Nested objects and arrays are assigned keys that adhere to JavaScript syntax. For example, if
the JSON string { "outer_key" : { "inner_key" : "value" } } is parsed into the token
variable \myJSONdata , to select the value associated with the key inner_key , the command
\JSONParseValue{\myJSONdata}{outer_key.inner_key} can be used. To give an example
for anarray, the command \JSONParseValue{\myJSONdata}{key[0]} selects thefirst valueof
the array associated with the key key in the JSON string { "key" : ["one" , "two"] } .

The first optional argument can be used to pass options to the command, such as escape or
rescan , that are then applied locally. When the option rescan is used, the token list is rescanned
before it is typeset (which means that all category codes that may have been changed before are set
to the default values). This is the default behaviour. If rescanning is not desired, pass the option
rescan=false to the command.

When a key is associated with an object or array, the whole object or array is output as JSON
string. The special key . (or the string defined using the key child sep) returns the whole JSON
object (or the whole JSON array if the JSON daza only cosists of one array) as string where all char-
acters (except for spaces and tabs) have category code 12 (“other”).

The command \JSONParseValue is not expandable and can therefore not be used as argu-
ment of certain other arguments where expansion is needed. In such cases, the expandable com-
mand \JSONParseExpandableValue should be used.

\JSONParseExpandableValue{‹token variable›}{‹key›}

Whole objects or arrays can be output as JSON string for further use in other macros using the ex-
pandable command \JSONParseExpandableValue . The value that is returned by this command
is typically a stringvariablewhereall charactershave category code 12 (“other”), except for spacesand
(horizontal) tabs that have category code 10 (“space”). This should be kept inmind if string compar-
isons should bemade. A comparison against a token listwith the default category codes used by TeX
won’t work, since letters will have category code 11 (“letter”), but it is possible to use \detokenize
to set the category codes of the token list in such a way that the comparison works.

For example, if the JSON string { "key" : "value" } has been parsed into the token vari-
able \myJSONdata , the command \JSONParseExpandableValue{\myJSONdata}{key} will
have the same meaning as \detokenize{value} and expand to a token list with all characters
having category code 12 (“other”).

\JSONParseSetValue{‹token variable›}{‹token variable›}{‹key›}

The command \JSONParseSetValue can be used to a select a value from the token variable that
stores the parsed JSON data via a key and store this value globally in another token variable.

4

Thefirst argumentdenotes the token variablewhere the value should be stored into. If this token
variable has not yet been defined, it will be created by this command. The second argument repre-
sents the token variable (property list) that has been created using the commands \JSONParse or
\JSONParseFromFile and that stores the parsed JSONdata. The third argument takes the key to
select the relevant value.

The token list returned by this command is a string variable where all characters have category
code 12 (“other”), except for spaces and (horizontal) tabs that have category code 10 (“space”).

\JSONParseSetRescanValue{‹token variable›}{‹token variable›}{‹key›}

The command \JSONParseSetRescanValue works the same way and also takes the same argu-
ments as \JSONParseSetValue except that it rescans the return value before storing it globally in
the token variable. Thismeans that the value stored in the token list will have the category codes TeX
uses per default. Option settings such as the escape option are taken into consideration during
the rescan process.

This can, for example, be necessary when numbers stored in the JSON data in scientific format
should be formatted using the siunitx package. The rescan is needed here, because otherwise
the character e would have the wrong category code and would hence not be recognised by the
formatting parser as exponentmarker. Let us assume the key number in some JSON source parsed
into the token variable \myJSONnumber represents the value -1.1e-1 , then the following could
be used to format the output:

−1.1× 10−1

\JSONParseSetRescanValue{\mynumber}
{\myJSONnumber}{number}

\num{\mynumber}

\JSONParseKeys{‹token variable›}{‹key›}

Thecommand \JSONParseSetKeys is used to get all top-level keys of a JSONobject as JSONarray
and return this array as stringwhere all characters (except for spaces and tabs) have category code 12
(“other”). The first argument of the command takes the token variable that holds the parsed JSON
data. The second argument takes the key to select the relevant entry from the parsed JSON data
using JavaScript syntax.

\JSONParseSetKeys{‹token variable›}{‹token variable›}{‹key›}

Thecommand \JSONParseSetKeys is used to get all top-level keys of a JSONobject as JSONarray
and parse this array into a token variable (a property list). The second argument of the command
takes the token variable that holds the parsed JSON data. The third argument takes the key to select
the relevant entry from the parsed JSON data using JavaScript syntax. The first argument takes the
token variable to hold the JSON array containing the top-level keys of the selected object. The token
variable to store the keys as array is created if it does not exist.

\JSONParseFilter{‹token variable›}{‹token variable›}{‹key›}

Thecommand \JSONParseFilter is used to select a part (such as an object or an array) of a JSON
object or JSONarray andparse this into a token variable (a property list). Thefirst argument denotes
the token variable where the value should be stored into. The second argument of the command
takes the token variable that holds the parsed JSON data. The third argument takes the key to select
the relevant entry from the parsed JSON data using JavaScript syntax.

5

\JSONParseArrayValues[‹options›]{‹token variable›}{‹key›}[‹subkey›]{‹string›}

The command \JSONParseArrayValues is used to select all values from an array from a parsed
JSON string or JSONfile. The second argument takes the token variable that holds the parsed JSON
data. The first argument takes the key to select the relevant entry from the parsed JSON data using
JavaScript syntax. The third argument is optional and can be used to pass a subkey, i. e. a key that
is used to select a value for every item. The last argument takes a string that is inserted between all
values when they are typeset.

For example, let us assume the following JSON data structure is parsed into the token variable
\myJSONdata :

{
"array" : [
{
"key_a" : "one" ,
"key_b" : "two"

} ,
{
"key_a" : "three" ,
"key_b" : "four"

}
]

}

Then, when using \JSONParseArrayValues{\myJSONdata}{array}[key_a]{, } , ‘one,
three’ is typeset to the document.

The first optional argument can be used to pass options to the command, such as escape or
rescan , that are then applied locally.

\JSONParseArrayValuesMap[‹options›]{‹token variable›}{‹key›}[‹subkey›]
{‹command name›}[‹before code›][‹after code›]

The command \JSONParseArrayValuesMap takes the same first three arguments as the com-
mand \JSONParseArrayValues and works in a similar way. However, instead of a string that
is added between the array items, it takes a command name as fourth argument. This command
can be defined beforehand and will be called for every array item. Inside its definition, the com-
mands \JSONParseArrayIndex , \JSONParseArrayKey and \JSONParseArrayValue can
be used which are updated for each item and output the index, the key and the value of the current
item respectively. Note that these commands are defined globally to make accessing them as easy
as possible.

For example, let us assume the same JSONdata structure as defined above parsed into the token
variable \myJSONdata . Then, the following can be done:

• one

• three

\newcommand{\myJSONitem}{
\item \emph{\JSONParseArrayValue}

}

\begin{itemize}
\JSONParseArrayValuesMap{\myJSONdata}

{array}[key_a]{myJSONitem}
\end{itemize}

It is possible to make use of multiple subkeys by passing them as a comma separated list as

6

third argument to the command. Inside the command that is called for every array item, the dif-
ferent keys and values can be access via commands numbered with uppercase Roman numerals
such as \JSONParseArrayKeyI , \JSONParseArrayKeyII , \JSONParseArrayKeyIII etc.
and \JSONParseArrayValueI , \JSONParseArrayValueII , \JSONParseArrayValueIII
etc.

We can extend the above example in the following way:

• one: two

• three: four

\newcommand{\myJSONitem}{
\item \emph{\JSONParseArrayValueI :}

\JSONParseArrayValueII
}

\begin{itemize}
\JSONParseArrayValuesMap{\myJSONdata}

{array}[key_a,key_b]{myJSONitem}
\end{itemize}

The command additionally takes two optional arguments at sixth and seventh position. These
arguments can be used to place code before and after the output that is generated by the command
called for every array item, for example for typesetting tabular contents.

Typesetting the above example in a tabular way can be achieved as follows:

key a key b
one two
three four

\newcommand{\myJSONitem}{
\JSONParseArrayValueI &
\JSONParseArrayValueII \\

}

\JSONParseArrayValuesMap{\myJSONdata}
{array}[key_a,key_b]{myJSONitem}
[\begin{tabular}{ c c }

\textbf{key a} &
\textbf{key b} \\ \hline]

[\hline \end{tabular}]

Finally, the first optional argument of the command can be used to pass options to the com-
mand, such as escape or rescan , that are then applied locally.

\JSONParseArrayCount{‹token variable›}{‹key›}

Thecommand \JSONParseArrayCount takes as first argument a token variable holding a parsed
JSONstring or JSONfile and as second argument a key to select an array in the JSONdata. It returns
an integer representing the number of items contained in the selected array.

\JSONParseSetArrayCount{‹token variable›}{‹token variable›}{‹key›}

The command \JSONParseSetArrayCount takes as second argument a token variable holding
a parsed JSON string or JSON file and as third argument a key to select an array in the JSON data.
It stores the number of items contained in the selected array in the token variable given in the first
argument of the command.

\JSONParseArrayMapInline{‹token variable›}{‹key›}{‹inline function›}

7

The command \JSONParseArrayMapInline takes as first argument a token variable holding a
parsed JSON string or JSON file and as second argument a key to select an array in the JSON data.
The third parameter can contain any codewhere the index of the current item is represented by #1 .

Using the above example, the mechanism could be implemented as follows:

• one

• three

\begin{itemize}
\JSONParseArrayMapInline{\myJSONdata}

{array}{
\item \JSONParseValue{\myJSONdata}

{array[#1].key_a}
}

\end{itemize}

Making use of the commands \JSONParseSetKeys and \JSONParseSetValue , keys and
values can be accessed. Due to the fact that cells create scopes, we need to repeat the part of the
code that selects the current key:

key_a: one
key_b: two

key_a: three
key_b: four

\JSONParseArrayMapInline{\myJSONdata}
{array}{
\JSONParseSetKeys{\mykeys}{\myJSONdata}

{array[#1]}
\JSONParseSetValue{\mykeya}

{\mykeys}{[0]}
\JSONParseSetValue{\mykeyb}

{\mykeys}{[1]}

\emph{\mykeya :}
\JSONParseValue{\myJSONdata}

{array[#1].\mykeya}\par

\emph{\mykeyb :}
\JSONParseValue{\myJSONdata}

{array[#1].\mykeyb}\par\bigskip
}

Note that the underscores in the names of the keys can be printed without changing to math
mode in the above example because all JSON data is stored as string where all characters (except for
spaces and tabs) have category code 12 (“other”).

5.1 Externalising parsed JSONdata

Parsing large JSON files can take quite a while. In order to speed up follow-up compilation runs,
this package provides a way to store parsed JSON data for future use. Once a file for externalization
has been created, the packagewill try to load the data from this file instead of parsing the JSONdata
again.

externalize
externalize={‹boolean›}

With the key externalize set (or set to true), a file will be created in the working directory that
stores the externalization of the parsed JSON data. The file name gets the extension .jsonparse .
The file name is created automatically and consists of the name of the current file followed by an
underscore and the name of the token variable where the JSON data is stored into. If a file with the
same name and file extension already exists, an error will be issued.

8

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

externalize prefix={‹string›}

With the key externalize prefix , a prefix can be defined that is added to the file name. Per
default this is an empty string.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

externalize file name={‹token list›}

The key externalize file name sets the schema for the file name. The default schema is as
follows:

\l_jsonparse_externalize_prefix_str \c_sys_jobname_str
\c_underscore_str \l_jsonparse_current_prop_str

The token variable \l_jsonparse_externalize_prefix_str contains the prefix that is
set using the key externalize prefix . \c_sys_jobname_str holds the name of the cur-
rent file (the current job name), \c_underscore_str is an underscore and the token variable
\l_jsonparse_current_prop_str contains the name of the property list where the relevant
JSON data is stored into.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

\JSONParsePut{‹token variable›}{‹key›}[‹JSON string›]

Thecommand \JSONParsePut is used by the externalization procedure to re-read already parsed
JSON data to the main file. It just adds a key-value pair to the property list (where the value part is
read as string). Hence, it can also be used to append more entries to an already existing property
list containing parsed JSON data.

5.2 Changing separators, output and other options

Thepackageprovides a set of keys canbe set to change the separatorsused to select the relevant value
in the JSON structure, the output that is generated from the JSON data as well as other things.

\JSONParseSet{‹options›}

The commands \JSONParseSet can be used to specify options via key-value pairs (separated by
commas). Keys that arepresentedhereas a subkey (i. e. precededbyanotherkeyanda slash) canalso
be set using the syntax key={subkey} andmultiple subkeys belonging toonekey canbe combined
using a comma as separator. Several user commands allow to pass keys directly which are then
applied locally. The following keys are available:

separator/child={‹string›}
separator/array left={‹string›}
separator/array right={‹string›}

9

With the key separator/child , the separator for child objects that is used in the syntax to select
a specific value in the JSON data structure can be changed. Per default, the child separator is a dot
(.). Changing the separator canbeuseful if keys in the JSONstructure alreadyuse these characters.

With the keys separator/array left and separator/array right , the separators for
arrays that areused in the syntax to select a specific value in the JSONdata structure canbe changed.
Per default, the separators are square brackets ([and]). Changing the separators can be useful if
keys in the JSON structure already use these characters. Changing these separators to curly braces
({}) is not supported due to their grouping function in TeX.

These keys can be set using \JSONParseSet . They can also be set locally as option to the com-
mands \JSONParse and \JSONParseFromFile .

zero-based
zero-based={‹boolean›}

If set (or explicitly set to true), the key zero-based sets the numbering of the index of array
items to zero-based. If set to false, the indexing starts with one instead. Per default, the package
uses zero-based indexing to resemble JavaScript notation.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

replace/true={‹string›}
replace/false={‹string›}
replace/null={‹string›}

With the keys replace/true , replace/false and replace/null , the string that is typeset
for true, false andnull values can be changed. Thedefault strings that are typeset are true , false
and null respectively. Only strings can be used as replacement. These replacements take place
already during parsing.

These keys can be set using \JSONParseSet . They can also be set locally as option to the com-
mands \JSONParse and \JSONParseFromFile .

replace/backspace={‹string›}
replace/formfeed={‹string›}
replace/linefeed={‹string›}
replace/carriage return={‹string›}
replace/horizontal tab={‹string›}

These keys can be used to set the replacement text for the JSON escape sequences \b (backspace),
\f (formfeed), \n (linefeed), \r (carriage return) and \t (horizontal tab). The default replace-
ment string is a space. Only strings can be used as replacement. These replacements take place only
during typesetting.

These keys can be set using \JSONParseSet . They can also be set locally as option to the com-
mands \JSONParseValue , \JSONParseArrayValues and \JSONParseArrayValuesMap .

check num
check num={‹boolean›}

If set to false , the key check num omits an internal check of numerical expressions against the
JSON specification for numbers. Turning off this feature can increase the parsing speed.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

10

5.3 L3 commands

\jsonparse_parse:n {‹JSON string›}

The command \jsonparse_parse:n takes as argument a JSON string and populates the token
variable (property list) \g_jsonparse_entries_prop with key-value pairs representing all ele-
ments of the JSON data structure represented by this string. This command does not escape the
input in any way.

\jsonparse_parse_to_prop:Nn ‹token variable› {‹JSON string›}

The command \jsonparse_parse_to_prop:Nn creates the token variable given as the first ar-
guments as property list and, after having called \jsonparse_parse:n using the second argu-
ment, sets this newly createdproperty list equal to \g_jsonparse_entries_prop . If escaping is
activated, this commandwill pre-process the input according to the selected escapingmode before
forwarding it to \jsonparse_parse:n . See more on escaping above in section 4.

\jsonparse_parse_keys:NN ‹token variable› ‹string variable›

Thecommand \jsonparse_parse_keys:NN processes the token variable given as the first argu-
ments as property list and selects all top-level keys which are then stored in the string variable as
JSON array. The pseudo key . (or the string defined using the key child sep) to select the com-
plete JSON data is ignored. If the JSON data is an array, the indices (wrapped into the separators
defined by separator/array left and separator/array right) of the items are used as
keys.

\jsonparse_filter:Nn ‹token variable› {‹key›}

Thecommand \jsonparse_filter:Nn processes the token variable given as the first arguments
as property list and filters it according to the key given as second argument. Filtering means that
for every entry in the property list, the key of this entry is compared against the key given to the
command. If the key in the property list starts with the given key, the matching part is removed
from the key in the property list. If the keys do notmatch, the entry is completely removed from the
property list. If the second argumentmatches the pseudo key . (or the string defined using the key
child sep) excactly, the complete property list except for this key is returned.

\jsonparse_array_count:NN ‹token variable› ‹integer variable›

The command \jsonparse_array_count:NN processes the token variable given as the first ar-
guments as property list and, assuming that it is an array, counts its items and stores the result in
the integer variable. If the token variable does not expand to a key that represents an array item,
that is if the key does not start with the character defined by separator/array left , the com-
mand will return an error. The command \JSONParseArrayCount serves as a wrapper of this
command.

\jsonparse_if_num:nTF {‹string›} {‹true code›} {‹false code›}
\jsonparse_if_num:nT {‹string›} {‹true code›}
\jsonparse_if_num:nF {‹string›} {‹false code›}

Thecommand \jsonparse_if_num:nTF checkswhether a string is a valid JSONnumber accord-
ing the relevant specification. It executes the true code if the string is a valid JSON number and the

11

false code if not. The variants \jsonparse_if_num:nT and \jsonparse_if_num:nF work ac-
cordingly.

\jsonparse_unicode_if_high_surrogate:nTF {‹codepoint›}
{‹true code›} {‹false code›}

\jsonparse_unicode_if_high_surrogate:nT {‹codepoint›} {‹true code›}
\jsonparse_unicode_if_high_surrogate:nF {‹codepoint›} {‹false code›}
\jsonparse_unicode_if_high_surrogate_p:n {‹codepoint›}

The command \jsonparse_unicode_if_high_surrogate:nTF can be used to check whether
a codepoint entered as argument (an integer that can be hexadecimal if preceded by ") is in the
range of "D800 and "DBFF which means that it is the first part of a surrogate pair (a high sur-
rogate). The variants that only provide an argument for the true or false case work accordingly.
Thecommand \jsonparse_unicode_if_high_surrogate_p:n returns aboolean trueor false
(i. e. \c_true_bool or \c_false_bool).

This conditional function is fully expandable.

\jsonparse_unicode_if_low_surrogate:nTF {‹codepoint›}
{‹true code›} {‹false code›}

\jsonparse_unicode_if_low_surrogate:nT {‹codepoint›} {‹true code›}
\jsonparse_unicode_if_low_surrogate:nF {‹codepoint›} {‹false code›}
\jsonparse_unicode_if_low_surrogate_p:n {‹codepoint›}

The command \jsonparse_unicode_if_low_surrogate:nTF can be used to check whether
a codepoint entered as argument (an integer that can be hexadecimal if preceded by ") is in the
range of "DC00 and "DFFF which means that it is the last part of a surrogate pair (a low surro-
gate). The variants that only provide an argument for the true or false case work accordingly. The
command \jsonparse_unicode_if_low_surrogate_p:n returns a boolean true or false (i. e.
\c_true_bool or \c_false_bool).

This conditional function is fully expandable.

\jsonparse_unicode_join_surrogate_pair:nn {‹codepoint›} {‹codepoint›}

The command \jsonparse_unicode_join_surrogate_pair:nn coverts a surrogate pair to
the relevant codepoint. It takes as first argument the codepoint of the low surrogate and as second
argument the codepoint of the high surrogate. It does not check whether the codepoints actually
belong to the relevant ranges of codepoints for high and low surrogates.

This function is fully expandable.

6 Changes

v0.3.0 (2024/04/08) First public beta release.

v0.5.0 (2024/04/09) Changed from string token variables to token lists to support Unicode.

v0.5.5 (2024/04/09) Bug fixes, introduction and enhancement of user functions.

v0.5.6 (2024/04/11) Bug fixes, escaping of special chars added.

v0.5.7 (2024/04/14) Bug fixes, key-value option setting added.

v0.6.0 (2024/04/15) Bug fixes, renaming of several commands.

v0.7.0 (2024/04/18) Renaming and rearranging of keys, escaping of special JSON escape sequences
added.

v0.7.1 (2024/04/20) Access to top-level keys of object added.

12

v0.8.0 (2024/04/24) Internal rewrite, escaping procedures changed.

v0.8.2 (2024/04/26) Bug fixes, externalizing parsed data.

v0.8.3 (2024/04/28) Escaping of characters with special meaning in TeX.

v0.8.5 (2024/05/05) Enhanced key management.

v0.8.6 (2024/05/09) Bug fix in nesting function.

v0.8.7 (2024/08/08) Corrections in documentation, error messages.

v0.9.0 (2024/08/27) Adaption to updated verbatim tokenization.

v0.9.1 (2024/09/21) Added functions to test for valid JSON numbers.

v0.9.3 (2024/10/24) Fixed a bug that prevented tabs in source from being parsed properly.

v0.9.5 (2024/10/27) Streamlining of code, clarification of explanations in documentation.

v0.9.6 (2024/10/31) Allowing for multiple return values whenmapping over arrays.

v0.9.7 (2024/11/05) Streamlining of code, ensuring backward compatibility.

v0.9.8 (2024/11/19) Bug fixes; adding possibility to store value in token list.

v0.9.10 (2024/12/10) Enhanced backward compatibility; switching to linked property lists.

v0.9.11 (2025/01/15) Bug fixes; adding additional command to loop through arrays.

v0.9.12 (2025/01/17) Bug fixes; adding commands to access items in arrays.

v1.0.0 (2025/01/20) Streamlining of code, unification of command structure.

v1.0.1 (2025/01/21) Fixes in documentation. Added user command for filtering.

v1.0.2 (2025/01/23) Support for Unicode surrogate pairs.

13

	Introduction
	Loading the package
	General remarks of the parsing procedure
	Escaping and special treatment of the input
	Main user commands
	Externalising parsed JSON data
	Changing separators, output and other options
	L3 commands

	Changes

